Gönderen Konu: Işık Nedir?  (Okunma sayısı 1256 defa)

0 Üye ve 1 Ziyaretçi konuyu incelemekte.

Çevrimdışı OLCAY

  • _ByKuS_
  • Admin
  • *
  • İleti: 8917
  • Rep Gücü : 674
  • Cinsiyet: Bay
  • O şimdi ****EVLİ****
    • Profili Görüntüle
    • boyacı
Işık Nedir?
« : Ekim 11, 2007, 12:04:02 ÖÖ »

Işık Nedir?

Çok eski çağlardan beri; bilim adamları, elektromanyetik tayf’ın dar bir bölümündeki radyasyon formlarını, göz sayesinde algılayabildikleri için buna ışık adını verdiler, ne olduğunu merak ettiler ve ilgi gösterdiler. Önceleri; Antik çağda, Yunanlılar zamanında, gözün, bakılan cisme doğru ışık ışınları yaydığı düşünülürdü, Epikür görüntünün gözden kaynaklanan resimlerden oluştuğunu ileri sürmüş, Platon ışığın bakılan cisimlerden göze geldiğini iddia etmişti. Daha garip düşünceler de mevcuttu; bunlar arasında, gözden fırlayan parçacıklar ile görme sağlandığı düşüncesi de mevcuttu. Bu düşünceler Antik çağdan 17. y.y. kadar uzanan düşünceleridir.


1675 yılında ilk kez Danimarkalı astronom Römer ışığın hızı konusuna eğildi, Jüpiter’in bir uydusunun gezegen arkasında kalma süresini
hesaplamakta olan Römer, bu sürenin gezegenin dünyaya uzaklığı arttığında fazlalaştığını farketti ve bunun ışığın daha çok yol katetmesi
ile ilgili olduğunu düşünerek ışığın hızı konusuna dikkati çekti.

Newton 1704'de ışık deneyleri ile ilgili çalışmalarını yazdığı ‘Optics’ kitabını yayımladı. Newton ışık ile ilgili olarak çalışırken, Hollanda'da Cristian Huygens bir teori geliştiriyordu ve ilk bilimcilerin tersine ışığın parçalardan değil dalgalardan meydana geldiğini öne sürüyordu. O da Decartes, Newton ve daha başkaları gibi çok ince ve elastik nitelikte olan ve ışığın yayılmasını sağlayan bir ortamdan bahsediyordu, bu madde tüm uzayı baştanbaşa dolduruyordu ve bu ortam ışık dalgalarının yayılmasını sağlıyordu. Daha sonraları eter veya esir denen ve varlığı ile ilgili pek çok çalışma yapılan sonunda yokluğuna karar verilen daha doğrusu tespitinin mümkün olamayacağı ispatlanan bir madde idi bu. Huygens'in çalışmaları her ne kadar Snell'in kırılma yasalarını destekliyorsa da, ışık düz gidiyor ve köşeleri dönmüyordu. Bu sıralarda ışık için kafa yoranlardan biri de Robert Hooke idi. O da ışığın eğri dalgalardan olduğu gibi bir varsayım geliştirmişti. Newton'un parçacık teorisi ile Huygens'in dalga teorisi arasındaki kavgayı o yıllarda tüm ağırlığınca hissedilen Newton'un Otoritesi kazandı. Öyle ki: Dönemin ünlü bir bilim adamı Newton için ‘Acaba onun da bizim gibi yeme, içme, uyuma gibi ihtiyaçları var mı?’ diye sormaktan kendini alamamıştır.

19. yüzyılda Thomas Young ortaya çıktı ve dalga teorisine ağırlık kazandırdı, o güne kadar dalga teorisi ile açıklanamayan kırınım
ve keskin gölge olayına, yeteri kadar kısa dalga uzunluklarında ışık hem düz gidebilir hem de keskin gölge yapabilir diyerek açıklık getirdi, girişim yasalarını açıkladı ve ışığın dalga uzunluğunu öçtü. Bu arada Fresnel adında bir Fransız bilim adamı kırınım olayını başarı ile
açıkladı ve dalga teorisi güçlendi.

Daha sonraları Fizeau, Foucault, Michelson ışık hızı ile ilgili deneyler yaptılar. Michelson 299.770 km/sn olarak ışık hızını belirledi. (Boşlukta ışık yayılma hızı 299.793 km/sn'dir.) Boşluk ışık hızı, kırılma indisine bölünerek o ortamdaki ışık hızı bulunur. Havanın kırılma indisi 1,0003'tür o halde hava içinde ışık hızı 299.703 km/sn olarak bulunur. Elmasın kırılma indisi 2. 42 dir o halde ışık hızı elmas içinde
124 .000 km/sn dir.

Clerk Maxwell 19. yüzyıl ortalarında elektromanyetik dalga kuramını geliştirdi ve elektromanyetik dalgaların ışık hızında hareket ettiğini
gösterdi, o halde ışık da bir elektromanyetik dalga formunda olabilirdi. Ayrıca daha başka elektromanyetik radyasyon formlarının da
varlığı araştırılmalı idi.

Işığın dalga formu 20. yüzyıl başlarına kadar ön planda oldu. 1900 yılında Max Plank‘ın kara cisim ışımasına ait kuramsal
çalışması yayınlandı ve sonuçta Plank enerjinin, enerji paketçikleri olarak yayıldığını ortaya koydu ve bu paketçiklere ‘Quanta‘ adını
verdi. Enerji quantumları E= hxf olarak formülize edilmekteydi. Bu teori de ki ‘h’ ifadesi doğanın değişmezlerinden biri olan
Plank sabitini ifade etmektedir ve 6.62x10-34 joule/sn'dir. Quantum teorisi ile dalga teorisi sarsılmadı ama, doğanın sürekliliği yasası
yara aldı. ‘Natura non facit saltus‘ sallanmaya başlamıştı. 1905 yıllarına gelindiğinde Einstein‘ın Fotoelektrik Etki Teorisi
Quantum teorisini doğruladı. Daha sonraları ‘Tanrı zar atmaz' diyerek quantum teorisini kabullenmekte zorlanan Einstein’ın,
özel rölativite kuramı ile; bizim evrenimiz için ışık hızının sınır olması ve ışık hızına erişilememesi, evrenin sınırlarını ortaya koydu.
Yine; çekim alanından geçen ışığın sapması varsayımının deneylerle doğrulanması, ışığın parçacık teorisini güçlendirdi. Planck ın E=hxf
olarak ortaya koyduğu formül, quantum denen enerji paketi ile ışığın frekası arsındaki ilişkiyi ortaya koymakta idi. Işık artık enerji
paketçikleri idi. Einstein Foto - Elektrik Etki olayını açıklarken ışığın foton adı verilen enerji parçacıkları olduğunu gösterdi.

Bu sıralar Niels Bohr adında bir Danimarkalı bilim adamı ortaya çıktı ve yeni bir atom modeli ortaya koydu. Bu modelde elektronlar
çekirdek etrafında belli yörünge seviyelerinde olabilirdi ara seviye söz konusu değildi. Elektronların bu seviyeler arasında sıçraması
söz konusu idi. Daha sonraları pek çok bilim adamının; dalga mekaniği, istatiksel mekanik konularında yaptığı çalışmalarla quantum teorisi dev adımlarla ilerledi. Bunlar arasında Heisenberg, Pauli, Landau, Born, Dirac gibi fizikçiler vardı.

1950 yıllarından sonra, elementer parçacıklar konusunda yapılan çalışmalar ve atomun yapısı ile ilgili yeni buluşlar 4 çeşit madde
etkileşimleri olduğunu ortaya koydu. Bunlar Kütlesel Çekim, Elektromanyetik, Zayıf Etkileşim ve Güçlü Etkileşim olarak tanımlandı (Bu konuyu bir başka yazımızda daha geniş olarak ele alacağız). Elektromanyetik etkileşimle bağlantılı olan gluon'a foton adı verildi. Yani 1905 de Einstein'ın ortaya koyduğu ışık parçacığı.

Bu konu ile ilgilenen Quantum elektrodinamiği; elektromanyetik alanın yani ışığın gluon'unun foton olduğunu söyler. Foton kütlesi '0' olan ve elektrik yükü '0' olan bir gluon'dur. Özel Rölativite'nin ortaya koyduğu ışığın çekim alanında sapması olayı bize foton adı verilen bu
parçacığın bir kütlesinin olduğunu söylemektedir keza ışık basıncı'nın olması da fotonun bir kütlesi ve momentumu olduğunu gösterir.
O halde ışık hızında, foton'un bir kütlesi vardır.

Her ne kadar rölativistik olarak düşünüldüğünde, hiçbir kütle ışık hızına ulaşamaz, rölativistik kütle artış formülünde, bir kütlenin ışık
hızına ulaşması durumunda kütlesi sonsuz olur. Sonsuz bir kütle sonsuz enerji demektir, bu da mümkün değildir. Peki o halde
fotonlar nasıl olup da ışık hızında gidebilmektedirler?

Rölativistik olarak bir kütlenin ışık hızına ulaştırılamaması fotonlar için geçerli değildir; çünkü foton öncelikle sükünet kütlesi '0' olan
bir quantadır. Sükünet kütlesinin '0' olması da fotonun özel halini tam olarak açıklamamaktadır ve bir belirsizlik vardır ki bu kütle artış
formülünde v = c alındığında sükünet kütlesi '0' olan foton'un kütlesi belirsiz olarak bulunur . Bu çelişki ancak şimdilik bu formülün
fotonlara uygulamaz demesi ile unutulmaya çalışılmaktadır.

Pratikte biz ışık diye elektromanyetik tayfın görünen ışık kısmındaki, elekromanyetik dalgaları içeren dar bir bölümününden bahsederiz;
çünkü görsel olarak bu bölümün algılanması göz sayesinde kolayca başarılır. Bunun dışında olan elektromanyetik dalgalar çeşitli cihazlarla
görülür hale getirilerek veya etkileri belirlenerek algılanır.